物理所在聚合物固態(tài)鈉電池研究中取得進展
固態(tài)電池是發(fā)展下一代高安全、高能量密度電池的關鍵技術。在發(fā)展固態(tài)電池的技術路線中,聚合物電解質由于具有良好的柔韌性,有利于在電極與電解質之間形成良好的界面接觸,能夠承受電極材料在充放電過程中的體積形變,且質量輕、易于加工,適合大規(guī)模生產,受到學術界研究人員的廣泛關注。聚合物固體電解質(SPE)傳統制備工藝流程通常是溶液溶解澆筑-自然風干成膜-真空高溫烘干去溶劑。然而由于真空高溫烘干為單純物理方法很難將SPE膜中殘余的溶劑分子100%去除(圖1a),殘留的液體會導致電池在隨后的循環(huán)過程中發(fā)生溶劑分子分解以及在界面處與電極發(fā)生副反應,從而導致界面阻抗增大、極化增大、循環(huán)壽命和庫倫效率低等一系列問題。
中國科學院物理研究所/北京凝聚態(tài)物理國家研究中心清潔能源實驗室E01組博士劉麗露和戚興國,在研究員胡勇勝和副研究員索鎏敏的指導下,提出一種通過化學反應原位去除SPE中殘余自由溶劑分子的方法。該方法關鍵在于通過調控選取合適溶劑、鹽以及添加劑組合,在溶劑去除過程中巧妙設計鹽-溶劑分子-添加劑兩步化學反應過程,實現將殘留的溶劑最終轉化為一種穩(wěn)定添加劑表面包覆層(圖1b),進而達到徹底去除殘余溶劑的目的。采用去離子水和NaFSI分別作為溶劑和鹽,聚合物選擇可溶于水的PEO。NaFSI結構上的S-F鍵不穩(wěn)定,遇水會發(fā)生微弱的水解產生HF,進一步添加納米Al2O3顆粒將中間產物轉化為AlF3·xH2O(圖1,圖2)。采用該工藝制備的SPE有效地降低了固態(tài)電池界面副反應,極大地提升了電池的庫倫效率、循環(huán)穩(wěn)定性和倍率性能。
采用磷酸釩鈉(NVP)和金屬鈉(Na)分別作為正極和負極組裝固態(tài)電池NVP|SPE|Na,NVP|FSI-Al2O3-AQ|Na固態(tài)電池首周可逆比容量為110mAh/g,庫倫效率為93.8%,達到了采用液體電解質時的水平。NVP|FSI-Al2O3-AQ|Na固態(tài)電池在1C倍率下循環(huán)2000周的過程中,庫倫效率始終保持在~100%,循環(huán)2000周以后容量保持率為92.8%,平均每周容量衰減率僅為0.0036%。對金屬鈉的對稱電池在100 μA/cm2的電流密度下可穩(wěn)定循環(huán)800h(圖3b)。電池循環(huán)過程中電化學阻抗譜也保持相對穩(wěn)定。采用該研究工作中所設計的SPE組裝的固態(tài)鈉電池的循環(huán)穩(wěn)定性是目前所報道的循環(huán)穩(wěn)定性最好的聚合物固態(tài)鈉電池(圖3)。
該工作利用鹽的吸水性和鹽本身的性質,實現了原位化學反應去除SPE中殘余溶劑(水)分子,并且SPE的整個制備過程在空氣中進行,無需濕度控制或氣氛保護。同時,水作為溶劑實現了綠色、無污染、低成本的SPE制備過程。該工作對于發(fā)展固態(tài)鋰/鈉電池中原位反應控制界面、人為調控界面具有重要的借鑒意義。該研究結果近日發(fā)表在ACS Energy Letters上(ACS Energy Letters,2019,4, 1650-1657),文章題為In Situ Formation of a Stable Interface in Solid-State Batteries。相關工作得到國家重點研發(fā)計劃(2016YFB0901500)和國家自然科學基金(51725206, 51421002和51822211)的支持。
圖1.(a-b)SPE制備過程示意圖:a)傳統過程;b)所設計的過程;(c)NaFSI和NaTFSI的化學結構
圖2. (a) FSI-1%Al2O3-AQ、FSI-1%Al2O3-AN和TFSI-1%Al2O3-AQ電解質膜的XPS圖譜;(b) Al2O3分別在NaFSI水溶液、NaFSI乙腈溶液和NaTFSI水溶液中反應后的紅外光譜;(c) Al2O3分別在NaFSI水溶液、NaFSI乙腈溶液和NaTFSI水溶液中反應離心后的照片和TEM圖;(d-e) Al2O3在NaFSI水溶液中反應離心后的高分辨TEM圖(d)和XPS圖譜(e)
圖3.(a)NVP|FSI-Al2O3-AQ|Na的長循環(huán)性能及其循環(huán)過程中的阻抗變化;(b)Na|FSI-Al2O3-AQ|Na的循環(huán)性能及其循環(huán)過程中的阻抗變化;(c)聚合物固態(tài)鈉電池的平均容量衰減率總結
來源:中國科學院
本文鏈接:http://m.brickellre.com{dede:field.arcurl/}
諾信新聞,諾信公司新聞,鋰電池行業(yè)新聞,展會新聞